Call for Abstract

12th International Conference on Genomics and Molecular Biology, will be organized around the theme “Analysing the Innovation & Future Trends in Genomics and Molecular Biology”

Genomics 2019 is comprised of 23 tracks and 0 sessions designed to offer comprehensive sessions that address current issues in Genomics 2019.

Submit your abstract to any of the mentioned tracks. All related abstracts are accepted.

Register now for the conference by choosing an appropriate package suitable to you.

Genomics is the investigation of genomes, the entire arrangement of hereditary material inside a life form. Genomics includes the sequencing and examination of genomes. Genomics is additionally worried about the structure, capacity, examination, and advancement of genomes. As opposed to hereditary qualities, which alludes to the investigation of individual qualities and their parts in legacy, genomics utilizes high throughput DNA sequencing and bioinformatics to amass, and examine the capacity and structure of whole genomes.

Cancer Genomics is the study of genetic mutations responsible for cancer, using genome sequencing and bioinformatics. Clinical genomics is to improve cancer treatment and outcomes lies in determining which sets of genes and gene interactions affect different subsets of cancers. International Cancer Genome Consortium (ICGC) is a voluntary scientific organization that provides a forum for collaboration among the world's leading cancer and genomic researchers.

Molecular biology concerns the molecular basis of biological activity between the various systems of a cell, including the interactions between the different types of DNA, RNA and proteins and their biosynthesis, and studies how these interactions are regulated. It has many applications like in gene finding, molecular mechanisms of diseases and its therapeutic approaches by cloning, expression and regulation of gene. Research area includes gene expression, epigenetics and chromatin structure and function, RNA processing, functions of non-coding RNAs, transcription. Nowadays, Most advaced researches are going on these topics: Molecular biologyDNA replication, repair and recombination, Transcription, RNA processing, Post-translational modification, proteomics, Mutation, Site-directed mutagenesis, Epigeneticschromatin structure and function, Molecular mechanisms of diseases.
  • DNA replication, repair and recombination
  • Transcription and Gene Expression
  • RNA processing
  • Post-translational modification, proteomics
  • Mutation, Site-directed mutagenesis
  • Epigenetics, chromatin structure and function
  • Molecular mechanisms of diseases

National Science Foundation (NSF) announces its intention to continue to support plant genome research through the Plant Genome Research Program (PGRP). Plant Genomics Research Program (PGRP) awards from the National Science Foundation (NSF) that NSF offers supplements to support research collaboration with scientist sin developing countries. The intent of Developing Country Collaborations in Plant Genome Research (DCC-PGR) awards is to support collaborative research linking U.S. researchers with partners from developing countries to solve problems of mutual interest in agriculture, energy and the environment, while placing U.S. and international researchers at the center of a global network of scientific excellence.

Structural biology seeks to provide a complete and coherent picture of biological phenomena at the molecular and atomic level. The goals of structural biology include developing a comprehensive understanding of the molecular shapes and forms embraced by biological macromolecules and extending this knowledge to understand how different molecular architectures are used to perform the chemical reactions that are central to life.Most recent topics related to structural biology are:Structural BiochemistryStructure and Function Determination, Hybrid Approaches for Structure Prediction, Structural Biology In Cancer ResearchComputational Approaches in Structural BiologyStrucutural Biology Databases.

 

  • Hybrid Approches for Structure Prediction
  • Structural Biology In Cancer Research
  • Computational Approaches in Structural Biology
  • Strucutural Biology Databases
  • Signalling Biology
  • Molecular Modeling and Drug Designing
  • Recent Advances In Structural Biology
  • Structural Biochemistry
  • Structure and Function Determination

Stem cells are cells originate in all multi-cellular organisms. They were isolated in mice in 1981 and in humans in 1998. In humans there are several types of stem cells, each with variable levels of potency. Stem cell treatments are a type of cell therapy that introduces new cells into adult bodies for possible treatment of cancerdiabetes, neurological disorders and other medical conditions. Stem cells have been used to repair tissue damaged by disease or age. In a developing embryo, stem cells can differentiate into all the specialized cells—ectoderm, endoderm and mesoderm, but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues.

  • Embryonic Stem Cells
  • Mesenchymal Stem Cells
  • Regulation of Stem Cells
  • Dedifferentiation, transdifferentiation and reprogramming
  • Stem Cells in Disease Modeling and Therapy
  • Stem Cell Treatments
  • Stem Cell Transplant
  • Stem Cell Technologies
  • Cancer Stem Cells
  • Stem Cells: Controversies & Regulation

Clinical Genomics is the use of genome sequencing to inform patient diagnosis and care. The California Initiative to Advance Precision Medicine has just been launched, and it is being headed by UCSF’s high profile recent hire, Atul Butte.
American College of Medical Genetics, formed in 1991 to help improve health through medical genetics, regularly publishes a list of internationally-recognized standards and guidelines describing best practices for testing using genetic approaches. In addition, the International Standards for Cytogenomic Arrays (ISCA) Consortium, of which OGT is a member, is a growing group of molecular genetics laboratories actively working towards improving healthcare through the establishment of guidelines for molecular testing, including the creation of standardized a CGH arrays for clinical genetics research. The Cancer Cytogenomics Microarray Consortium (CCMC) is a similar group, recently founded with the goal of maximizing the benefits provided by microarrays for cancer research. These groups continue to work towards outlining a set of standards to ensure that molecular techniques improve and enhance the services provided by clinical research laboratories.
The global market for Clinical Genomics is expected to reach USD 22.1 billion by 2020, growing at an estimated CAGR of 10.3% from 2014 to 2020, according to a new study by Grand View Research, Inc.
Genomics based personalized medicine segment on the other hand is expected to grow at the fastest CAGR of over 12.0% from 2014 to 2020 due to increasing demand for population based therapeutic solutions and subsequent increase in R&D initiatives. Australian Genome Research Facility (Australia), Baylor College of Medicine Human Genome Sequencing Center (Houston, TX, USA), BC Genome Sciences Centre (BCGSC) – Vancouver, BC, Canada, Beijing Genomics Institute (BGI) – China, Broad Institute of MIT and Harvard – Boston, MA, USA, Cold Spring Harbor Laboratory (CSHL) – Cold Spring Harbor, NY, USA, DOE Joint Genome Institute (JGI) – Walnut Creek, CA, USA, Garvan Institute – Australia, Genome Analysis Center (TGAC) - Norwich, UK, Genome Institute at Washington University (TGI) – St. Louis, MO, USA.

Bioinformatics the science of collecting and analyzing complex biological data such as genetic codes. Molecular medicine requires the integration and analysis of genomic, molecular, cellular, as well as clinical data and it thus offers a remarkable set of challenges to bioinformatics. Bioinformatics nowadays has an essential role both, in deciphering genomic, transcriptomic, and proteomic data generated by high-throughput experimental technologies, and in organizing information gathered from traditional biology and medicine. Research Centers for Bioinformatics are: National Centers for Biomedical Computing,  National Center for Simulation of Biological Structures, National Center for the Multiscale Analysis of Genomic and Cellular Networks, National Alliance for Medical Image Computing (NA-MIC), National Center for Biomedical Ontology (NCBO) at Stanford University, Integrate Data for Analysis, Anonymization, and Sharing (IDASH) at the University of California, San Diego. The Canadian government is also ponying up cash for omics research, with the Canada Foundation for Innovation backing several projects as part of a C$30.4 million ($27.6 million) investment in academic research. McGill University scooped the joint-biggest award for a project, C$400,000, to advance its single-cell genomics infrastructure.

  • Cell Organelles: Function and Dysfunction
  • Dynamic Control of Cell Shape and Polarity
  • Nuclear Structure, Dynamics and Function
  • Epigenetic Control of Cell Fate
  • Cell Division and Cell Cycle
  • Cell Death, Autophagy, Cell Stress
  • Cell Signalling and Intracellular Trafficking
  • Cell Biology of Ageing
  • Cell Biology of Metabolic Diseases
  • Cell Biomechanics and Regulations

Next generation sequencing (NGS), massively parallel or deep sequencing are related terms that describe a DNA sequencing technology which has revolutionized genomic research. The global next Generation Sequencing market is poised to grow at a CAGR of more than 20% to reach around $5.0 billion by 2020. The NGS market assessment was made based on products, technologies, end users, applications and geography.

MicroRNAs constitute a recently discovered class of non-coding RNAs that play key roles in the regulation of gene expression. According to the International Agency for Research on Cancer (IARC), a specialized agency of the WHO, about 12.7 million new cancer cases were reported in 2008 and the number reached 14.1 million in 2012. MicroRNAs are used as a biomarker for cancer diagnosis and treatment. Some of the major companies operating in the global microRNA market are Affymetrix Inc., Alnylam Pharmaceuticals Inc., Santaris Pharma A/S, Exiqon A/S, AstraZeneca Pharmaceuticals LP, Biogen Idec Inc., Eli Lilly and Co., Pfizer Inc., CBC Comprehensive Biomarker Center GmbH, F. Hoffman-La Roche, GlaxoSmithKline, Merck & Co. Inc., Novartis AG and Sigma-Aldrich. GlaxoSmithKline (GSK) has established collaboration with Regulus Therapeutics to develop and commercialize therapeutics targeting microRNA-122 for hepatitis C virus (HCV) infection.

First, the vast numbers of species and the much larger size of some genomes makes the entire sequencing of all genomes a non-optimal approach for understanding genome structure. Second, within a given species most individuals are genetically distinct in a number of ways. What does it actually mean, for example, to "sequence a human genome"? The genomes of two individuals who are genetically distinct differ with respect to DNA sequence by definition. These two problems, and the potential for other novel applications, have given rise to new approaches which, taken together, constitute the field of comparative genomics.

Functional Genomics use vast wealth of data produced by genomic and transcriptomic projectstodescribe gene functions and interactions. Trends in Functional Genomics are Affymetrix emerged as an early innovator in this area by inventing a practical way to analyze gene function as a system. NimbleGen Systems and Febit, are developing fabricated microarrays that are produced using a micro mirror based, mask less system. Texas Instruments developed the micro mirrors that direct light onto specific areas of a grid to activate the DNA synthesis reaction and elongate oligonucleotide chains. BioRobotics, Genetix, Genomic Solutions, and others offer a wide range of products needed to manufacture arrays. Applied Biosystems, PerkinElmer, Qiagen, and Zymark Corporation manufacture automated work stations and robotic systems to fully automate routine laboratory procedures. Invitrogen, PanVera, and Roche Applied Science, have developed complete biochemical and cellular assays that are compatible with high throughput systems Applied Bio systems offers a wide range of core instruments and systems necessary for functional genomics, such as DNA sequencers and synthesizers.

American Society of Transplant Surgeons Up to $100,000 per year ($50,000 in cash and up to $50,000 in-kind) for 2 years. For purposes of this grant, in-kind support is limited to the cost of assays. Genomics Market in the US 2014-2018 and Global Genomics Market 2014-2018 research reports to its store.  Functional Genomics market in the US is forecast to grow at a CAGR of 7.28% over the period 2013-2018 whereas the global genomics industry is projected to grow at 11.21% CAGR during the same time. Global genomics market research for 2014-2018 considers the revenue generated by vendors through the sales of instruments, consumables, and services for genomics to arrive at a ranking of the leading vendors of the market, and to calculate the market size.

Pharmacogenomics  is the study of the role of genetics in drug response. Computational advances in Pharmacogenomics has proven to be a blessing in research. A large amount of research in the biomedical sciences regarding Pharmacogenomics as of late stems from combinatorial chemistry,[53] genomic mining, omic technologies and high throughput screening. In order for the field to grow rich knowledge enterprises and business must work more closely together and adopt simulation strategies. Major Universities dealing Pharmacogenomics are:  Harvard University, US, , University of Cambridge, UK, National University of Singapore, Singapore, University of Oxford, UK, Karolinska Institute, Sweden, Monash University, Australia, Imperial College London, UK, University of Tokyo, Japan, University of Melbourne, Australia, University of Michigan, US.

Genomic Medicine as "an emerging medical discipline that involves using genomic information about an individual as part of their clinical care (e.g., for diagnostic or therapeutic decision-making) and the health outcomes and policy implications of that clinical use." Already, genomic medicine is making an impact in the fields of oncology, pharmacology, rare and undiagnosed diseases, and infectious disease.

Biomarker is a measurable indicator of the severity or presence of some disease state.
Biomarkers continue to become increasingly relevant in research and healthcare applications, as evidenced by the global market for products involved in their identification, validation, and use estimated at $8.3 billion in 2007 and projected to increase to $15 billion in 2010. The accelerating pace of activity in this area is further underlined by a cursory review of the publication space, where the number of relevant scientific articles generated annually has doubled from 20,000 to 40,000 over the past decade. AACR, in partnership with the Food and Drug Administration (FDA) and National Cancer Institute (NCI), formed the AACR-FDA-NCI Cancer Biomarkers Collaborative (CBC) to accelerate the translation of cancer therapeutics into the clinic by shaping the processes for the effective development of validated biomarkers and their use in clinical trials for maximum patient benefit.

Microbial Genomics- applies recombinant DNA, DNA sequencing methods, and bioinformatics to sequence, assemble, and analyze the function and structure of genomes in microbes. Genetics Otago is the largest center for advanced Genetics research in Australia. Focus on 7 main themes, which cover the full spectrum of genetics research. The Centre of Microbial and Plant Genetics (CMPG) was founded in 1953 discoverer of crossing-over sites in chromosomes of meiotic cells. A number of important scientific opportunities exist in genome analysis related to microbiology. Current genome projects, however, do not adequately represent the full range of microorganisms. A microbial genome program based on rational priorities is needed to make strategic decisions about the appropriation and distribution of funding and resources. OpGen filed plans with the U.S. Securities and Exchange Commission to sell 3.75 million shares in an initial public offering with the goal of securing up to $35.2 million. The Gaithersburg, Md.-based microbial genetics analysis company said it will use the money as working capital and to support increased sales and marketing efforts for its genetic tests for multidrug resistance organisms.

Genome engineering refers to the strategies and techniques developed in recent years for the targeted, specific modification of the genetic information or genome of living organisms. The CRISPR-cas9 system makes gene editing in many organisms and cells like our own egg, sperm or embryo — more efficient, accessible and simple than ever before. These groundbreaking capabilities have spawned discussions surrounding the ethics and applications of the new system, and have garnered significant attention around the world to ensure ethically correct usage

Genomics research holds the key to meeting many of the challenges of the coming years. At the moment, the biggest challenge is in data analysis. We can generate large amounts of data very inexpensively, but that overwhelms our capacity to understand it. The major challenge of the Genome Research is we need to infuse genomic information into medical practice, which is really hard. There are issues around confidentiality, education, electronic medical records, how to carry genomic information throughout lifespan and make it available to physicians.

Genomics is the study of the genetic material or genomes of an organism. Analysts forecast the Global Genomics market will grow at a CAGR of 11.21% over the period 2013-2018. According to the report, the most important driver of the market is an increase in the demand for consumables. The growing adoption of genetic testing for various applications, especially in regions such as the APAC, and an increase in genetic testing volumes in North America and Western Europe is increasing the demand for consumables.